Synthesis of π -Conjugated Soluble Poly(aryleneethynylene) Type Polymers and Their Properties

Masakazu TAKAGI, Kenichi KIZU, Yuichi MIYAZAKI, Tsukasa MARUYAMA, Kenji KUBOTA, and Takakazu YAMAMOTO*

Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 227

†Faculty of Engineering, Gunma University, Tenjincho, Kiryu 376

Pd-catalyzed coupling reactions with dihaloaromatic compounds X-Ar-X and diethynylaromatic compounds HC \equiv C-Ar'-C \equiv CH give new soluble π -conjugated polymers $-(Ar-C\equiv C-Ar'-C\equiv C-\frac{1}{n})$ when Ar and/or Ar' group is pyridine-2,5-diyl or has a long chain alkyl substituent.

Preparation and properties of poly(phenylenevinylene) PPV and its derivatives have been extensively studied. However, those of poly(aryleneethynylene) PAE having a structure similar to that of PPV have received much less attention presumably due to low solubility of most of PAE's so far prepared. 2a,c We now report the preparation of new soluble PAE type polymers and properties of the polymers. Obtaining a series of the processable PAE type polymers are expected to give bases for comprehension of chemical and physical properties of π -conjugated polymers and their application.

$$-CH=CH$$
 $-CH=CH$
 $-CH$
 $-CH=CH$
 $-CH$
 $-CH$

The soluble PAE type polymers have been prepared by Pd-catalyzed polycondensation expressed by Eq.1 and 2 (Scheme 1) at 50-110 °C in toluene, in a manner similar to that previously reported. (2a, b), 3) The polymers thus prepared were reprecipitated, washed repeatedly with methanol, dried under vacuum and obtained in 93-100% yields.

The PAE type polymers having alkyl-substituted thiophene-2,5-diyl and/or pyridine-2,5-diyl unit are soluble in organic solvents; PAE-1 and -2 are soluble in chloroform and tetrahydrofuran (e.g., solubility of PAE-1 in CHCl₃ = ca. 10 mg cm⁻³), PAE-4 and -5 in formic acid, and PAE-3 in formic acid, chloroform and N-methyl-2-pyrrolidone. Such effects of alkyl substituent ^{4a-d)} and pyridine-2,5-diyl group ^{4e,f)} on the enhancement of solubility of poly(arylene)s have been reported.

¹H NMR spectrum (Fig. 1) of PAE-1 is reasonable for the structure shown above, showing peaks at δ 0.89 (3H, t, J=5 Hz, (CH₂)₅CH₃), 1.25—1.68 (8H,CH₂(CH₂)₄CH₃), 2.78 (2H, CH₂C₅H₁₁), 7.13 (ca. 0.4H, C₄HS), 7.20 (ca. 0.6H, C₄HS), 7.48 (1H, d, J=8 Hz, C₅H₃N), 7.78 (1H, d, J=8 Hz, C₅H₃N), 8.76

(1H, s, C_5H_3N) ppm. The appearance of the two peaks for $C_4\underline{H}S$ may be attributed to the presence of both head-to-tail and head-to-head units with regard to the direction of the hexyl group in the 3-hexylthiophene-2,5-diyl unit. PAE - 2 also shows a reasonable 1H NMR spectrum.

$$X-Ar-X+HC \equiv C-Ar'-C \equiv CH \qquad \frac{Pd(PPh_3)_4 - Cul}{excess \ NEt_3} \qquad \left(Ar-C \equiv C-Ar'-C \equiv C\right)_n \qquad (1)$$

$$Ar \qquad Ar' \qquad Ar' \qquad Ar' \qquad Pd(PPh_3)_4 = tetrakis- (triphenylphosphine)palladium(0)$$

$$PAE-2 \qquad Se \qquad NEt_3 \qquad X = 1 \text{ for } PAE-1 \text{ and } -2 \text{ Br for } PAE-3 \text{ and } -4 \text{ hex } = \text{hexyl}$$

$$PAE-4 \qquad Pd(PPh_3)_4 - Cul \qquad Ar' \qquad A$$

Fig. 1. ¹H NMR Spectrum of PAE-1 (in CDCl₃).

IR spectra of PAE-1 through PAE-5 support the structures shown above, giving rise to a medium absorption peak of $\nu(C\equiv C)$ at about 2200 cm⁻¹ and strong $\delta(C-H)$ absorption peaks of aromatic rings in a range of 720 — 1020 cm⁻¹. PAE-4 and PAE-5 give essentially the same CP-MAS solid ¹³C-NMR spectrum to each other,⁵⁾ suggesting PAE-4 is mainly constituted of head-to-tail units, which are to be formed exclusively by the reaction expressed by Eq. 2.

PAE-1, PAE-2, and PAE-5 have molecular weight of 48×10^4 , 9.6×10^4 , 21×10^4 , respectively, as determined by light scattering method. ⁶⁾ PAE-1 is amorphous as judged from its powder X-ray diffraction pattern, and the polymer has the density of 1.05 g cm^{-3} .

Films of the PAE type polymers shown above can be easily obtained by casting the solutions of the polymers on substrates, and the film of PAE-1 on Pt plate is electrochemically active to give rise to a cyclic voltammogram (CV) shown in Fig. 2.

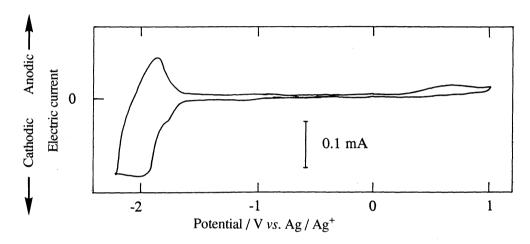


Fig. 2. CV curve of PAE-1 laid on Pt plate in an CH_3CN solution of $[NEt_4][ClO_4]$ (0.1 M) at 50 mV s⁻¹ at room temperature.

It is known that thiophene ring has a rather electron-donating property in π -conjugated polymers whereas pyridine ring has electron-accepting property. The observation of the electrochemically active cycle only in the reducing region for PAE-1 (Fig. 2) indicates that PAE-1 has essentially an electron-accepting property presumably due to the presence of both the electron-withdrawing pyridine-2,5-diyl and -C=C- groups. PAE-2 also exhibits an active redox cycle at about -2.2 V vs. Ag/Ag⁺.

The PAE type polymers shown above have high thermal stability. No thermal decomposition was observed below 300 °C as determined by TGA, and PAE-1 showed 75% residual weight at 600 °C.

References

"Handbook of Conducting Polymers," ed by T. A. Skotheim, Marcel Dekker, New York (1986); D. D. C. Bradley and Y. Mori, "Electronic Properties of Conjugated Polymers III," ed by H. Kuzmany, M. Mehring, and S. Roth, Springer, Berlin (1989); W. S. Huang, K. Y. Jen, M. Angelopoules, A. G. MacDiarmid, and M. P. Cava, Mol. Cryst. Liq. Cryst., 189, 237 (1990); I. Murase, T. Ohnishi, T. Noguchi, and M. Hirooka, Polym. Commun., 28, 229 (1987); S. Yamada, S. Tokito, T. Tsutsui, and S. Saito, J. Chem. Soc.,

- Chem. Commun., 1987, 1448.
- a) K. Sanechika, T. Yamamoto, and A. Yamamoto, *Bull. Chem. Soc. Jpn.*, 57, 752 (1984);
 b) *idem, Polym. Prepr. Jpn.*, 30, 160 (1981);
 c) M. Tateishi, H. Nishihara and K. Aramaki, *Chem. Lett.*, 1989, 1727;
 d) T. Yamamoto, *Prog. Polym. Sci.*, 17, 1153 (1992).
- 3) S. J. Havens and P. M. Hergenrother, *J. Polym. Sci., Polym. Lett. Edt.*, **23**, 587 (1985); D. L. Trubo and C. S. Marvel, *J. Polym. Sci., Polym. Chem.*, **24**, 2311 (1986).
- a) T. Yamamoto and K. Sanechika, Chem. Ind. (London), 1982, 301; b) T. Yamamoto, K. Sanechika, and A. Yamamoto, U.S. Patent 4521589 (1985); c) R. S. Elsenbaumer, K. Y. Jen, and R. Oboodi, Synth. Met., 15, 169 (1986); d) H. Masuda, S. Tanaka, and K. Kaeriyama, Synth. Met., 33, 365 (1989); e) T. Yamamoto, T. Ito, and K. Kubota, Chem. Lett., 1988, 153; f) T. Yamamoto, T. Ito, K. Sanechika, and M. Hishinuma, Chem. Ind. (London), 1988, 337.
- 5) PAE-4: CP-MAS solid 13 C-NMR : δ : 86.4 (C=C), 94.2 (C=C), 123.4 (C₅H₃N), 132.5 (C₅H₃N), 145.2 (C₅H₃N), 156.9 (C₅H₃N) ppm. PAE-5: CP-MAS solid 13 C-NMR : δ : 87.7 (C=C), 94.7 (C=C), 118.8 (C₅H₃N), 129.0 (C₅H₃N), 140.3 (C₅H₃N), 151.1 (C₅H₃N) ppm. Although the peak positions obtained in the 13 C-NMR spectra of PAE-4 and PAE-5 show some difference, the absorption patterns of the two spectra are considered to be essentially same.
- 6) K. Kubota, H. Urabe, Y. Tominaga, and S. Fujime, *Macromolecules*, **17**, 2096 (1984). The results of molecular weight determination by the light scattering are still preliminary, because stiff π -conjugated polymer molecules may coagulate. GPC analysis (eluent = THF) indicated that PAE-1 and PAE-2 had Mw of 19000 and 36000 (vs. polystyrene), respectively.
- 7) Z.-H. Zhou, T. Maruyama, T. Kanbara, T. Ikeda, K. Ichimura, T. Yamamoto, and K. Tokuda, J. Chem. Soc., Chem. Commun., 1991, 1210.

(Received March 5, 1993)